FIRST PREPARATION OF DIBENZO[*bc,fg*][1,4]DITHIAPENTALENE AND DETERMINATION OF THE STRUCTURE BY X-RAY ANALYSIS

Takeshi Kimura,^a Yasuhiro Ishikawa,^a Satoshi Ogawa,^a Takehiko Nishio,^b Ikuo Iida,^b and Naomichi Furukawa.*^a

^aDepartment of Chemistry, ^bAnalytical Center, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Abstract: New stable dibenzo [bc, fg][1,4] dithiapentalene (1) was prepared by heating 1,9-bis(methylthio)dibenzothiophene in a glass tube. The X-ray analysis of 1 reveals clearly that it has a completely planar structure. Repeated scanning of cyclic voltammetry of 1 shows an analogous voltammogram with that of polythiophene.

There are four isomeric thienothiophenes among which thieno[3,4-c]thiophene, called nonclassical thiophene, is somewhat unstable since it must use unusual bonding orbitals of the sulfur atoms to accommodate 10π electrons for resonance stabilization.¹ Several stable thieno[3,4-c]thiophenes bearing four substituents such as tetraphenylthieno[3,4-c]thiophene (5) have been reported.² As a new stable thieno[3,4-c]thiophene derivative, we found that dibenzo[bc,fg][1,4]dithiapentalene (1),³ the dithio analog of dibenzo[cd,gh]pentalene which was prepared by Trost and his co-workers,⁴ was obtained serendipitously upon thermolysis or photolysis of 1,9-bis(methylthio)dibenzothiophene (3).⁵ This communication reports the results of the first preparation of a new stable dithiapentalene (1) and determination of the structure by X-ray crystallographic analysis.

When 3 was placed in a long pyrex tube and heated gently with a burner flame, dithiapentalene (1) (<1%) was obtained together with thieno [2,3,4,5-lmn] [9,10] dithiaphenanthrene (2) (61%) after purification with column chromatography and preparative HPLC.^{6,7} However, photolysis of 3 with a 400 W high-pressure mercury lamp for 10 h gave 1 and 2 in 11% and 16% yields respectively (Scheme 1). Interestingly, it was found that the photolysis of thiosulfonate (4) which was prepared by oxidation of 2 with *m*-chloroperbenzoic

acid (mCPBA)⁸ proceeded cleanly under irradiation for 72 h to afford 1 as the sole product in 61% yield together with the recovered 4 in 33% yield (Scheme 2).⁹

The UV spectrum of pentalene 1 lacks the visible band at around 530 nm observed in tetraphenylthieno[3,4-c]thiophene (5) corresponding to the biradical structure, ^{1b} which suggests that the pentalene 1 should have neither a biradical nor a charged structure and the character of 1 was different from that of 5. Therefore, X-ray crystallographic analysis of 1 was performed and the structure was shown in Figure 1.¹⁰ The result indicates clearly that pentalene 1 is a completely planar molecule belonging to the point group D_{2k}. The C-S bonds of the thiophene rings are 1.791 and 1.792 Å which are considerably longer than those of 5 (1.706 Å).^{1b} Furthermore, the benzene rings of 1 are considerably distorted (C₁-C₃-C₄*, 128.5°; C₂-C₁-C₃, 116.1°; C₁-C₂-C₅, 116.8°; C₂-C₅-C₆*, 125.7°) from those of a normal hexagonal structure. The bond length of C₃-C₃* (1.386 Å) is shorter than that of 5 (1.452 Å) suggesting that the two benzene rings are stabilized by conjugation and the two sulfur atoms participate less in the essential π -conjugation than the usual thiophene ring.

Figure 1. X-Ray Crystallographic Analysis of 1.

Since the electrochemical characters of 1 would be attractive properties, the oxidation potentials of 1 and 2 were measured with cyclic voltammetry in acetonitrile at 20 °C, using a Pt electrode, Ag/0.01 M AgNO₃ as a reference electrode (electrolyte: 0.1 M NaClO₄; scan rate: 200 mV/s). The oxidation potentials of these compounds are listed as follows: 1 (E_p =1.16 V, irreversible); 2 ($E_{1/2}$ =0.91 V, reversible); dibenzothiophene (E_p =1.31 V, irreversible).¹¹ The cyclic voltammogram of 1 after 20 repeated scannings reveals nearly the same

behavior of polythiophene on electrolysis (Figure 2).¹² Actually, the electrode was found to be coated with a yellow compound but the structure has not been determined. Investigation into the chemical properties of 1 is underway.

Figure 2. Cyclic Voltammogram of 1 (0.82 mM) after 20 Times Scannings in CH₃CN at 20 $^{\circ}$ C (Using Pt Electrode, Ag/0.01 M AgNO₃ as Reference Electrode; Electrolyte: 0.1 M NaClO₄; Scan Rate: 200 mV/s).

Acknowledgment: This work was supported by a Grant-in-Aid for Scientific Research on Priority Area of Organic Unusual Valency from the Ministry of Education, Science, and Culture of Japan (No. 03233101); This work was also supported from the Special Grant from University of Tsukuba.

References and Notes

- a) Cava, M. P.; Lakshmikantham, M. V. Acc. Chem. Res., 1975, 8, 139; b) Cava, M. P.; Lakshmikantham, M. V. "Comprehensive Heterocyclic Chemistry", Vol. 4, ed. by Bird, C. W.; Cheeseman, G. W. H. Pergamon: Oxford, 1984, pp. 1037; c) Nakayama, J.; Ishii, A.; Kobayashi, Y.; Hoshino, M. J. Chem. Soc., Chem. Commun., 1988, 959.
- Cava, M. P.; Husbands, G. E. M. J. Am. Chem. Soc., 1969, 91, 3952; Cava, M. P.; Behforouz, M.; Husbands, G. E. M.; Srinivasan, M. *ibid*, 1973, 95, 2561; Miller, K. J.; Moschner, K. F.; Potts, K. T. *ibid*, 1983, 105, 1705; Gimarc, B. M. *ibid*, 1983, 105, 1979; Yoneda, S.; Ozaki, K.; Inoue, T.; Sugimoto, A.; Yanagi, K.; Minobe, M. *ibid*, 1985, 107, 5801; Yoneda, S.; Ozaki, K.; Tsubouchi, A.; Kojima, H.; Yanagi, K. J. Heterocyclic Chem., 1988, 25, 559; Tsubouchi, A.; Matsumura, N.; Inoue, H.; Hamasaki, N.; Yoneda, S.; Yanagi, K. J. Chem. Soc., Chem. Commun., 1989, 223; Tsubouchi, A.; Matsumura, N.;

Inoue, H. Chem. Lett., 1990, 1853; Ishii, A.; Nakayama, J.; Kazami, J.; Ida, Y.; Nakamura, T.; Hoshino, M. J. Org. Chem., 1991, 56, 78; Tsubouchi, A.; Matsumura, N.; Inoue, H. J. Chem. Soc., Chem. Commun., 1991, 520; Tsubouchi, A.; Matsumura, N.; Inoue, H.; Yanagi, K. J. Chem. Soc., Perkin Trans. 1, 1991, 909.

- 3. Lee, Y.-S.; Kertesz, M. J. Chem. Phys., 1988, 88, 2609.
- 4. Trost, B. M.; Kinson, P. L. J. Am. Chem. Soc., 1975, 97, 2438; Trost, B. M.; Kinson, P. L.; Maier, C. A.; Paul, I. C. ibid, 1971, 93, 7275.
- Furukawa, N.; Kimura, T.; Horie, Y.; Ogawa, S. Heterocycles, 1991, 32, 675; Kimura, T.; Horie, Y.; Ogawa, S.; Fujihara, H.; Iwasaki, F.; Furukawa, N. *ibid*, 1992, 33, 101; Furukawa, N.; Kimura, T.; Horie, Y.; Ogawa, S.; Fujihara, H. Tetrahedron Lett., 1992, 33, 1489; Furukawa, N.; Ishikawa, Y.; Kimura, T.; Ogawa, S. Chem. Lett., 1992, 675; Furukawa, N. "Heteroatom Chemistry", ed. by Block, E. VCH, 1990, pp. 165.
- 6. 1: mp 165 °C (sublimed); ¹H-NMR (500 MHz, CDCl₃) δ 7.73 (d, J=7.7 Hz, 4H, Ar-H), 7.60 (t, J=7.7 Hz, 2H, Ar-H); ¹³C-NMR (125 MHz, CDCl₃) δ 141.6, 135.7, 128.3, 116.2; MS (m/z) 214 (M⁺); UV (CH₃CN) λ_{max} nm (ε) 243 (32000), 270 (4300), 329 (1900); Anal. Calcd for C₁₂H₆S₂: C, 67.25; H, 2.82. Found: C, 67.34; H, 2.90; 2: mp 132.5-133 °C (lit 126 °C)⁷; ¹H-NMR (270 MHz, CDCl₃) δ 7.71 (d, J=7.9 Hz, 2H, Ar-H), 7.40 (t, J=7.9 Hz, 2H, Ar-H); 7.25 (d, J=7.9 Hz, 2H, Ar-H); MS (m/z) 246 (M⁺).
- 7. Cossu, S.; De Lucchi, O.; Piga, E.; Valle, G. Phosphorus, Sulfur, and Silicon, 1991, 63, 51.
- 8. 4: mp 220-221; ¹H-NMR (270 MHz, CDCl₃) δ 8.17 (dd, J₁=8.1 Hz, J₂=0.5 Hz, 1H, Ar-H), 8.03 (dd, J₁=7.6 Hz, J₂=0.5 Hz, 1H, Ar-H), 7.94 (dd, J₁=8.1 Hz, J₂=0.5 Hz, 1H, Ar-H), 7.78 (t, J=8.1 Hz, 1H, Ar-H), 7.62 (t, J=7.6 Hz, 1H, Ar-H), 7.49 (dd, J₁=7.6 Hz, J₂=0.5 Hz, 1H Ar-H); ¹³C-NMR (67 MHz, CDCl₃) δ 141.3, 140.9, 137.2, 130.9, 128.4, 127.9,127.7, 127.0, 126.8, 123.7, 122.3, 115.5; IR (KBr) 1317, 1149 (SO₂) cm⁻¹; MS (m/z) 278 (M⁺); Anal. Calcd for C₁₂H₆O₂S₃: C, 51.78; H, 2.17. Found: C, 51.68; H, 2.22.
- Meinwald reported the preparation of naphtho[1,8-bc]thiete on photolysis of naphtho[1,8-cd]1,2-dithiole 1,1dioxide; Meinwald, J.; Knapp, S.; Obendorf, S. K.; Hughes, R. E. J. Am. Chem. Soc., 1976, 98, 6643.
- 10. The Crystal Data for 1; $C_{12}H_6S_2$, Monoclinic, Space Group P2₁/c, a=7.641(1) Å, b=4.000(0) Å, c=14.909(2) Å, β =95.23(6) °, V=453.8 Å³, z=2, D_x=1.57 g/cm³, μ (Mo-K α)=5.1 cm⁻¹, R=0.029 (R_w=0.033), (temp. 23±1 °C); Bond Lengths (Å): S-C₁, 1.791(2); S-C₄, 1.790(2); C₁-C₃, 1.377(3); C₄-C₃*, 1.375(3); C₃-C₃*, 1.386(3); C₁-C₂, 1.397(3); C₄-C₆, 1.395(3); C₂-C₅, 1.399(4); C₅-C₆*, 1.406(4). Bond Angles (deg.): C₁-S-C₄, 92.3(1); S-C₁-C₃, 108.0(2); C₁-C₃-C₃*, 115.7(2); C₃-C₃*-C₄, 115.8(2); S-C₄-C₃*, 108.1(2); S-C₁-C₂, 135.8(2); S-C₄-C₆, 135.8(2); C₃*-C₄-C₆, 116.1(2); C₄-C₆-C₅*, 116.8(2). The Partial Torsional Angles (deg.): C₄-S-C₁-C₂, 179.94(29); C₄-S-C₁-C₃, 0.26(20); C₁-S-C₄-C₆, 179.81(28); S-C₁-C₂-C₅, -179.79(22); C₃-C₁-C₂-C₅, -0.08(35).
- 11. Stender, K.-W.; Klar, G.; Knittel, D. Z. Naturforsch., 1985, 40b, 774.
- Cunningham, D. D.; Galal, A.; Pham, C. V.; Lewis, E. T.; Burkhardt, A.; Laguren-Davidson, L.; Nkansah,
 A.; Ataman, O. Y.; Zimmer, H.; Mark, Jr., H. B. J. Electrochem. Soc., 1988, 135, 2750; Tsai, E. W.;
 Basak, S.; Ruiz, J. P.; Reynolds, J. R.; Rajeshwar, K. J. Electrochem. Soc., 1989, 136, 3683.

(Received in Japan 29 May 1992)